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Outline

The last decade of x86

Dslash kernel

The performance gap:

plain C vs. optimized code
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SIMD: Single Instruction, Multiple Data

y0 y1 y2 y3

+
x0 x1 x2 x3

=

x0+y0 x1+y1 x2+y2 x3+y3

SISD processor

4 instructions

SIMD processor

1 instruction
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CPU hierarchy

Larger

Faster

Registers

Cache

Memory

Disk
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CPU hierarchy
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Registers
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HBW Memory

Memory
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Many- and Multi-core

#cores ≥ 52

low frequency

weak/no Out-of-Order

better energy efficiency

high Flop/s

#cores ≤ 18

high frequency

deep Out-of-Order

large shared cache
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Vectorization techniques

Assembly
Intrinsics

Compiler

Vectorization

Ease of Programming

P
e

rf
o

rm
a

n
c

e
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HISQ Dslash w = /Dv

wn =

4∑

µ=0

[(

Un,µvn+µ − U
†
n−µ,µ

vn−µ

)

+
(

Nn,µvn+3µ − N
†
n−3µ,µvn−3µ

)]
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complex 3-dim vector

complex 3×3 matrix U(3) matrix
→֒ reconstruct from 14 floats

ν

µ
matrix

vector

w = standard

+ naik

� precalculated

� three-link term

1146 Flop/site

0.8 Flop/byte
→֒ single-precision



Multiple right-hand sides

Memory

Memory
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DS( ) DS multi3( )

pro: much better arithmetic intensity

con: higher register pressure



Multiple right-hand sides (rhs)
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Performance on Haswell
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(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Staggered,
Wilson

Domain Wall



Dslash on Haswell
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Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)



Vectorizing QCD
Site fusion

March 10, 2016 Patrick Steinbrecher Slide 12

even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)



Vectorizing QCD
Site fusion
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even

odd

even-odd preconditioning

need to fuse sites of the same parity

fuse e.g. 16 sites (fp32, AVX512)

323×8 −→ 2×322×8
constraints on lattice size

...
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Vectorizing QCD
Matrix-vector multiplication
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( )
,
,
,

,
,
, ×

16 matrices times 16 vectors

︸

︷︷

︸

sites

very natural implementation −→ use SIMD registers like scalars

( )

real imag

matrix

vector



Naive site fusion

even odd cache line

merge
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Efficient site fusion

even oddi cache linei

boundary

1 3 5

1st entry

1 3 5

2nd entry

1

0 2 4 0

2nd entry

2 4

1st entry

0

permute

0 0

center
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Performance gains on Haswell
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(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323
×8, 16 right-hand sides
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1 core, vectorized
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Thank you for your attention!
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Intrinsics
v o i d add ( d o u b l e ∗a , d o u b l e ∗b ,

d o u b l e ∗c ) {

m512d a , b , c ;

a = mm512 load pd ( a ) ;
b = mm512 load pd ( b ) ;

c = mm512 add pd ( a , b ) ;

m m 5 1 2 s t o r e p d ( c , c ) ;
}

C
vo id add ( double ∗a , double ∗b ,

double ∗c ) {

f o r ( i n t i = 0 ; i < 8; ++ i ) {

c [ i ] = a [ i ] + b [ i ] ;
}

}

Assembly
v o i d add ( d o u b l e ∗a , d o u b l e ∗b ,

d o u b l e ∗c ) {
asm {

mov r d i , a
mov r s i , b
mov rdx , c

vmovapd zmm1 , [ r d i ]
vmovapd zmm2 , [ r s i ]
vaddpd zmm3 , zmm2 , zmm1
vmovapd [ r d x ] , zmm3

}
}


